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The localization-disorder paradigm is analyzed for a specific system of weakly repulsive Bose gas at zero
temperature placed into a quenched random potential. We show that at low average density or weak enough
interaction the particles fill deep potential wells of the random potential whose radius and depth depend on the
characteristics of the random potential and the interacting gas. The localized state is the random singlet with no
long-range phase correlation. At a critical density the quantum phase transition to the coherent superfluid state
proceeds. We calculate the critical density in terms of the geometrical characteristics of the noise and the gas.
In a finite system the ground state becomes nonergodic at very low density. For atoms in traps four different
regimes are found; only one of it is superfluid. The theory is extended to lower �one and two� dimensions. Its
quantitative predictions can be checked in experiments with ultracold atomic gases and other Bose systems.

DOI: 10.1103/PhysRevB.80.104515 PACS number�s�: 67.85.�d, 03.75.Hh, 03.75.Kk

I. INTRODUCTION

The interplay between interaction and disorder is an im-
portant paradigm of condensed-matter physics. In 1958
Anderson1 showed that in disordered solids a noninteracting
electron may become localized due to the quantum interfer-
ence. A phenomenological theory of localization2,3 con-
cluded that noninteracting electrons in one and two dimen-
sions are always localized. In three dimensions the localized
and extended states are separated by the mobility edge.
States with energy significantly below this edge in three di-
mensions are strongly localized. They appear in rare fluctua-
tions of the quenched random potential.4–6 These instanton-
type states broaden and eventually overlap with growing
energy. A system of noninteracting fermions in the random
potential transits from the insulator to metal state when its
Fermi energy exceeds the mobility edge. Thus, the Pauli
principle delocalizes fermions in three dimensions, but
leaves them localized in lower dimensions. The common be-
lief is that the repulsive interaction suppresses the localiza-
tion. So far this problem was studied only in the limit of a
weak disorder.7,8 Therefore, the interaction induced delocal-
ization transition remains beyond the frameworks of the
theory. The metal-insulator transition in two dimensions was
observed in experiments9 suggesting the decisive role of in-
teraction.

The physical picture changes drastically for bosons. The
noninteracting bosons condense at a single-particle state with
the lowest energy. In a homogeneous system it leads to a
coherent quantum state known as the Bose-Einstein conden-
sate �BEC�. Examples are superfluid phases of He,10

superconductors,11 BEC of ultracold alkali atoms,12,13 exci-
tons in semiconductors,14 and BEC of spin waves.15 The lo-
calization of Cooper pairs was proposed as a mechanism
beyond the superconductor-insulator transition.16 BEC still
persists when a small amount of disorder is added to the
system. BEC in a random environment was observed in the
superfluid phase of 4He in Vycor glass or aerogels,17 in 3He

in aerogels,18 and in ultracold alkali atoms in disordered
traps.19–26 Most of the papers concentrate on the possibility
of Anderson localization in effectively one-dimensional �1D�
condensates. In contrast to random potentials in crystals, the
random speckle potential has a typical correlation length of
the order of micron which is about of the same order as the
transverse extension of the atomic cloud. The longitudinal
extension is about 10 to 100 times larger.19 In most of the
experiments, the expanding density profile after switching
off the harmonic potential was analyzed. For weak random
potential Lye et al.19 found essentially the density profile
corresponding to the Thomas-Fermi theory. For larger values
of the random potential these authors found a stripelike pat-
tern of about 2 �m spacing and damped dipole oscillations.
For very strong disorder the atoms are localized in the
minima of the random potential. Chen et al.24 also studied in
situ and found fragmentation of the BEC. In some papers the
superposition of a periodic plus a random potential was con-
sidered to enrich the number of possible phases.20,21 Schulte
et al.20 found features in the expanding condensate like pro-
nounced fringes and changes in the axial size of the central
peak which they trace back to the random potential.

Theoretical investigations of Bose gases or fluids in a dis-
ordered environment focused on the three following issues:

�i� the critical behavior at the normal to superfluid transi-
tion in the vicinity of the transition temperature Tc�n�,27–29

where n denotes the boson density. For fixed disorder
strength, Tc�n� decreases with decreasing boson density n
and eventually vanishes for some critical value of the density
n=nc.

�ii� The description of zero-temperature quantum phase
transition from the superfluid to a nonsuperfluid �glassy�
phase taking place at the critical value nc of the boson
density.30–33 For a recent review of this activity see Ref. 34.

�iii� The microscopic description of the superfluid density
�and the condensate� in a disordered environment in the re-
gion of comparatively high average density of the gas n
�nc and T�Tc�n�.35–41

PHYSICAL REVIEW B 80, 104515 �2009�

1098-0121/2009/80�10�/104515�18� ©2009 The American Physical Society104515-1

http://dx.doi.org/10.1103/PhysRevB.80.104515


Since in this paper we restrict ourselves mainly to zero
temperature, below we give a brief review only of the works
mentioned in �ii� and �iii�:

�ii� The quantum phase transition, taking place at zero
temperature and n=nc, exhibits in general a critical behavior
different from that observed at finite Tc�n�. This is because in
the quantum domain static and dynamic critical behavior are
intertwined. This quantum phase transition was considered
by Ma et al.30 who mapped the problem onto a d+1 dimen-
sional classical �4 theory with disorder completely corre-
lated in time. Their description gives rise to new critical
exponents which were calculated by � expansion around d
=4 dimensions. This work has been criticized by Fisher et
al.31 One conclusion of the work of Fisher et al.31 is that the
dynamic critical exponent z should be equal to the dimension
d of the system in all space dimensions. This result has been
disputed recently.32 Indeed, quantum Monte Carlo studies
show z�1.4 for two-dimensional �2D� system, in discrep-
ancy with the relation z=d.42

Some arguments of the work by Fisher et al.31 rely on the
treatment of Giamarchi and Schulz33 who found the super-
fluid to insulator transition in one dimension. This transition
happens at arbitrary disorder by increasing the interaction to
a sufficiently large value. The fact that the transition into the
nonsuperfluid phase happens at increasing interaction seems
paradoxical, but it can be explained by the increase of quan-
tum fluctuations of the phase. As we will show, for weak
interaction there is a second transition resulting from the
competition between the disorder and the interaction. We be-
lieve that namely this transition has its counterparts in higher
dimension and is observed in experiments with cooled gases.

�iii� The fate of the inert layer and deeply localized �Lif-
shitz� states was discussed by Lee and Gunn35 without spe-
cific predictions to be checked by experiments. More re-
cently the reduction in the superfluid and the condensate
density deeply in the superfluid phase was considered micro-
scopically by Huang and Meng.36 These authors used the
Bogoliubov transformation and found a decrease in the su-
perfluid density and of the condensate if disorder is taken
into account. The corrections to both quantities are propor-
tional to −�nc /n�1/2 in our terms. Thus this approach is re-
stricted to weak disorder and n�nc. These results have been
confirmed and extended by other authors.37–41 All these
works used the approximation of weak disorder. The ex-
trapolation of their results to the range of strong disorder
made in Ref. 36 was illegitimate.

Zhou43 argued that the T=0 transition to the superfluid
phase is of the percolation type. Lugan et al.22 considered an
effectively one-dimensional cylindrical BEC with the disor-
der bounded from below but not from above. Using the nu-
merical solution of the Gross-Pitaevskii equation as well as a
mean-field-like approach they identified three different re-
gimes: the Lifshitz glass, the fragmented BEC, and the non-
fragmented BEC. Whereas their overall picture is similar to
ours �when we specialize our results to the one-dimensional
case�, a detailed comparison is not possible since they did
not present the geometrical description of the localized state.
An additional discussion of this work is given in Sec. IX.

More recent papers considered the dynamic consequences
of Anderson localization in BEC and do not directly overlap

with our work.44–46 Using arguments similar to those used in
a published work by two of the authors,47 Shklovskii48 inde-
pendently and practically simultaneously arrived at the same
conclusions about the critical value of density at which the
transition between an insulating and the superfluid phase
takes place, but he did not give the description of the local-
ized phase.

In this paper we develop an alternative approach to the
quantum phase transition starting from deeply localized
state. We give a rather transparent qualitative and quantita-
tive geometrical description of the localized state. We show
that, at a critical density nc which we express in terms of the
disorder characteristics and interaction strength, the increas-
ing tunneling of particles between fragments leads to transi-
tion from the random singlet state to the coherent superfluid.
The localized state can exist in several different regimes.
These regimes as well as their quantitative characteristics
strongly depend on the ratio of two basic length scales char-
acterizing the disorder: the Larkin length L and the correla-
tion length b. We extend our consideration to an experimen-
tally important situation of the Bose gas confined by a
harmonic trap. In this case the gas forms a cloud whose size
is determined by the energy minimization. We demonstrate
that all regimes which appear for the gas in the box appear
also in the trap when varying the number of particles and
other parameters.

Our consideration is based on theory of deeply localized
single-particle states in an uncorrelated random potential
given in seminal works by Lifshitz,4 Zittartz and Langer,5

and Halperin and Lax.6 Their predecessors Keldysh and
Proshko49 and Kane50 studied electron density of state in a
smooth random potential having in mind semiconductors.
These works were extended and detailed in Refs. 51–58. We
propose a modest extension and simplification of their argu-
ments to find some geometrical and physical characteristics
of these states necessary for our purposes. On the other hand,
our theory can be considered as a generalization of their
instanton-type theory incorporating the self-consistent field
of the interacting particles. Some preliminary results of the
general theory presented here have been shown already with-
out derivation in Ref. 59. Therefore, in order to make the
paper self-contained, it was impossible to avoid some over-
lap with Ref. 59.

The paper is organized as follows. In the next section we
characterize the random potential. In Sec. III we consider the
single-particle deeply localized states in three dimensions for
the uncorrelated random potential obeying the Gaussian dis-
tribution. In Sec. IV we consider how the dilute Bose gas
fills the deep fluctuation potential wells in this case. In Sec.
V the transition from the random singlet to the coherent su-
perfluid state is considered. Section VI extends all these re-
sults to the case of strongly correlated random potential. Sec-
tion VII contains a description of the Bose gas subjected to a
random potential in a harmonic trap. Section VIII represents
extension of these results to lower dimensions 1 and 2. The
discussion of our results and conclusions are left for Sec. IX.

II. DESCRIPTION OF THE DISORDER

The disorder will be represented by a random potential
U�x� with zero average at each point of the space and obey-
ing the Gaussian distribution:
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dW�U�x�,dU�x��

= exp�−
1

2
� U�x�K−1�x,x��U�x��dxdx��

�	det K

x

��	/2
�1/2dU�x� , �1�

where �	 is the volume of an infinitesimal cell; K�x ,x�� is
the correlation function or correlator of the random potential

K�x,x�� = �U�x�U�x��� , �2�

and K−1�x ,x�� is the inverse correlator defined by equation

� K�x,x��K−1�x�,x��dx� = ��x − x�� . �3�

The simplest random potential with zero correlation length
has a �-like correlator:

K0�x,x�� = �U�x�U�x��� = �2��x − x�� . �4�

We will call it uncorrelated random potential. The corre-
sponding distribution function is the product of independent
distribution functions at each point of space:

dW0�U�x�,dU�x�� = exp�−
1

2�2� U2�x�dx�
�


x
�
 �	

2
�2�1/2
dU�x�� . �5�

More general Gaussian random potential has a finite correla-
tion length b. The simplest realization of the random Gauss-
ian potential with the finite correlation length is the Ornstein-
Zernike �OZ� correlator:

KOZ�x,x�� =
�2

4
b2

exp
−
�x − x��

b
�

�x − x��
. �6�

The corresponding probability distribution reads

dWOZ�U�x�,dU�x��

= exp�−
1

2�2� �U2�x� + b2��U�x��2�dx�
�


q
�� �1 + b2q2�

2
�2 �	q�1/2

dŨ�q�� , �7�

where Ũ�q� is the Fourier transformation of U�x� and �	q is
the element of volume in the momentum space. At b=0 Eq.
�7� turns into Eq. �5�. The OZ distribution has a characteristic
energy scale U0=� /b3/2.

The disorder correlator may be regular at coincident co-
ordinates x=x�. Then it has the following form:

K�x,x�� = �U2�h
 �x − x��
b

� , �8�

where �U2���U2�x�� is the average quadratic fluctuation of
the random field at a point. The function h�u� which deter-
mines the shape of the correlation function is normalized by

the condition h�0�=1. In this case the Fourier component of
the inverse correlator is a growing function of the wave vec-
tor. As a consequence, K−1�x ,x�� is not well defined. Instead
we can use the probability in the momentum space:

dW�Ũ�q�,dŨ�q�� = exp
−� Ũ�q�Ũ�− q�

2K̃�q�
dq�

�

q

 �	q

2
K̃�q�
�1/2

dŨ�q� . �9�

Simple examples of nonsingular correlators are the

Lorenz distribution with hL�u�= �u2+1�−1 and K̃L�q�
=2
2�U2�b2q−1 exp�−bq� and the Gaussian distribution with

hG�u�=exp�−u2 /2� and K̃G�q�= �2
�3/2�U2�b3 exp�−b2q2 /2�.
In all these cases the scale of energy is established by U0
=	�U2� and the scale of length is b.

III. SINGLE-PARTICLE LEVELS IN AN UNCORRELATED
RANDOM POTENTIAL

In this section we study the properties of single-particle
states in the uncorrelated random potential defined by Eqs.
�4� and �5� and illustrated by Fig. 1. This is a modest exten-
sion of the well-known works in Refs. 4–6. Some simplifi-
cations allow us to find more detailed information about the
distribution functions of the energy, sizes, and distances be-
tween the states and the tunneling amplitudes between them.
We are interested in a statistical description of the spectrum
and wave functions of Schrödinger equation in the random
potential U�x�:


2

2m
�2� + �E − U�x��� = 0. �10�

Its energy levels E�U�x�� in a finite volume are functionals
of the potential U�x�. The only characteristic of the random
potential � together with world constants 
 and m establishes
the scale of length

L =

4

m2�2 , �11�

which will be called Larkin length in analogy with the scale
found in Larkin’s work60 for an elastic medium in a random
field. We will show that L sets the scale of the extension of
the deeply localized states with large by modulus negative
energy. For delocalized states with large positive energy the
same value with precision of numerical factor is the mean
free path. The scale of energy E can be obtained from the
Larkin length in an obvious way:

E =

2

mL2 =
m3�4


6 . �12�

Further, we will work in a rather rough approximation simi-
lar to that used by Larkin and Ovchinnikov61 and Imry and
Ma.62 However, we start with a rigorous statement of the
problem which gives a clue for our further estimates. The
most easily calculable value is the density of state ��E ,	�
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which can be written as a path integral �see the cited
works4–6�:

��E,	� =
1

	
� ��E − E�U�x���dW�U�x�,	� , �13�

where E�U�x�� is the spectrum of eigenvalues of the
Schrödinger Eq. �10� in the volume 	.

In a large three-dimensional �3D� volume the states with
energy E�E are delocalized, whereas the states with nega-
tive energy sufficiently large by modulus E�0 and �E��E
are strongly localized. The threshold of localization is a posi-
tive energy of the order of E. Note that this is correct only for
3D systems. As it was conjectured in the work by Abrahams
et al.,2 all single-particle states in 1D and 2D systems are
localized. Near the threshold the wave function has very
complicated fractal structure.63,64 In the interval between E
and −E the transition from fractal to strongly localized states
evolves. The latter are supported by rare fluctuations of the
random potential, which form a potential well sufficiently
deep to have the negative energy E as its only bound state.
The problem of the deep random levels was considered by
already mentioned authors4–6 about 40 years ago. We repro-
duce some of their results and extend them to find the prob-
ability distribution of the levels with energy less than some E
�E�0; �E��E�, the distances between such states and the
tunneling amplitude between them.

As it is clearly seen from Eqs. �1� and �13�, the main
exponential factor in the density of state can be found by
minimization of the integral �	U2�x�d	 at a fixed value of
the energy level E�U�x��, which is a functional of the ran-
dom potential U�x�. The latter can be determined as a mini-
mum of the energy over the wave function

E�U�x�� = min
��x�

E�U�x�,��x��

= min
��x�
� � 
2

2m
����x��2 + U�x����x��2�d	 .

�14�

Thus, we need to minimize a functional,

F�U�x�,��x�� =� U2�x�d	 − �� � 
2

2m
����x��2

+ U�x����x��2�d	 , �15�

over ��x� and U�x�. Here � is a Lagrangian factor. The mini-
mization over ��x� leads to Schrödinger Eq. �10�, whereas
the minimization over U�x� results in a relation between
U�x� and ��x�:

U�x� = ����x��2. �16�

Thus, Eq. �10� turns into the Ginzburg-Landau equation. For
our purpose the most important consequence of relationship
�16� is that the fluctuation potential well U�x� has the same
characteristic linear size R as the wave function ��x�. It is
clear that the maximum probability requires the bound state
with the fixed energy E to be the only bound state in the
potential well. Otherwise, at the same energy, we need a
deeper well, i.e., larger U2�x�. For the same reason the fluc-
tuation well must have the spherical shape. Let the radius of
the well is R. Then the depth of the well can be estimated as
Umin�−
2 /mR2 and the energy level in it differs by a factor
of the order of 1/2: E�−
2 /2mR2. The exponential factor in
the density of state reads

exp�−

4


3
R3U2

2�2 � = exp
−
L
R
� = exp�− 
 �E�

E �1/2� ,

�17�

where we redefined the Larkin length L incorporating the
factor 2
 /3 in it. Here and henceforth we perform calcula-
tions for 3D systems. The results for other dimensions will
be derived later. Result �17� is valid provided the number in
the exponent is large, i.e., R�L and �E��E.

Let us consider the probability or the part of volume q�R�
occupied by the wells with the radius less than R or the
energy less than E=−
2 /2mR2. It is obvious that q�R� con-
tains an exponential factor �17� and some preexponent. Since
q�R� is a dimensionless value, the preexponent must be a
function of the dimensionless ratio L /R:

q�R� = f
L
R
�exp
−

L
R
� . �18�

The function f�x� must be much slower function of its argu-
ment than the exponent. Most naturally it is a power function
f�x��x� with a critical exponent �. It can be extracted from
the work by Cardy:51 �=1 for the uncorrelated disorder. We
will see that it is inessential for further conclusions. By
knowledge of q�R� we can calculate the number nw�R� of the
wells with the radius less than R per unit volume, i.e., the
density of such wells.65 In order to do that the unit volume
must be divided into the cells of the volume R3. Each cell
can contain or do not contain the fluctuation, but fluctuations
with the centers approaching each other at a distance less
than R must be considered as one asymmetric potential well.
The number of such cells in unit volume is R−3. Thus,

FIG. 1. �Color online� Uncorrelated potential, the characteristic
length, and energy scales are L and E, respectively. There is typi-
cally only one bound state in a single potential well.
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nw�R� = R−3q�R� = R−3f
L
R
�exp
−

L
R
� . �19�

The average distance d�R� between the wells with the radius
less than R reads

d�R� = �nw�R��−1/3 = Rf1/3 exp
 L
3R

� . �20�

This equation shows that the distance between the wells is
significantly larger than the size of the wells. The situation is
depicted in Fig. 2. Finally we find the tunneling factor t�R�
for two typical wells with the energy levels of the same order
or the radius R of the same order of magnitude. It is given by
the semiclassical expression t�R�=exp�− 1


��p�dl�, where the
integral path connects two wells. By the order of magnitude
�p��	2m�E��
 /R and the length of the path of integration
is �d�R�. Thus, 1


��p�dl�d /R= f1/3 exp� L
3R �. Finally, we find

t�R� = exp�− f1/3 exp
 L
3R

�� . �21�

At R�L /3 or E�−9E, the distances between the optimal
potential wells become of the same order of magnitude as
their size R. Simultaneously the tunneling amplitude between
the wells becomes of the order of 1. The potential wells
percolate and tunneling is not small, but the states still are
not propagating due to the Anderson localization.1

IV. BOSE GAS IN A LARGE BOX WITH AN
UNCORRELATED RANDOM POTENTIAL

In the ground state of an ideal Bose gas in a large box
with the Gaussian random potential all particles are located
at the deepest fluctuation level. In the box of the cubic shape
with the side L the deepest level which occurs with probabil-
ity of the order of 1 has the radius R determined by equation:
L3nw�R�=1, i.e., R� L

3 ln�L/L� . The prefactor introduces a cor-
rection to the denominator of the order of ln�ln L

L � which can
be neglected. The corresponding energy is E�−9E�ln L

L �2.
Such a state is highly nonergodic since the location and the
depth of the deepest level strongly depend on a specific re-
alization of the disordered potential. Therefore, the average
energy per particle and other properties averaged over the

ensemble have nothing in common with the properties of a
specific sample. Even an infinitely small interaction immedi-
ately changes the situation: the system becomes ergodic in
the thermodynamic limit, i.e., when first the size of the sys-
tem grows to infinity and then the interaction goes to zero.
For example, the energy per particle in sufficiently large vol-
ume coincides with its average over the ensemble. The rea-
son of such a sharp change is that, at any small but finite
interaction, the particles cannot more fill one well since their
repulsion finally overcomes the attraction to the potential
well. They will be redistributed over multiple wells. Since
the distribution of wells in different parts of sufficiently large
volume passes all possible random configurations with
proper ensemble probabilities, the ergodicity is established.
In this section we find how the interacting particles eventu-
ally fill deep single-particle levels simultaneously changing
their size and shape by their self-consistent field.

In a real experiment the Bose gas may be quenched in a
metastable state depending on the cooling rate and other non-
thermodynamic factors. This is what Fisher et al.31 call the
Bose glass. Such a state is also possible in the case of weakly
repulsive Bose gas. It looks plausible that the Bose glass
whose metastable state has energy close to that of the ground
state has also close to the ground state statistical character-
istics, but this question needs more thorough study. However,
as it will be demonstrated later, in the case of cooled alkali
atoms the tunneling amplitude still remains large enough to
ensure the relaxation to the equilibrium state in 10−3–10−2 s.
Our further estimates relate to the real ground state.

The weakly repulsive Bose gas in a random potential is
described by the well-known Hamiltonian

H = �
p

p2

2m
ap

†ap +
g

2
� ��†��2dx +� U�x��†�dx , �22�

where ��x�=	−1/2�pap exp�ipx /
� is the secondary quan-
tized wave function; the positive coupling constant g is as-
sociated with the scattering amplitude a by the relationship66

g =
4

2a

m
. �23�

As in Bogoliubov’s theory67 and its extension by Belyaev,68

we assume that the gas criterion na3�1 is satisfied. Here n
=N /	 is the average particle density and N is their total
number. The purpose of the following consideration is to find
how, with the growth of the number of particles, they even-
tually fill the fluctuation potential wells. Implicitly our con-
siderations take into account the change in the optimal po-
tential wells due to the interaction.

Let N particles with the average density of particles n fill
all potential wells with the radii less than R in the ground
state. The average number of particles per well is

N�R� =
n

nw�R�
. �24�

The local density inside the well of the linear size of R is
np�R�=3N�R� /4
R3. The gain of energy per particle due to
the random potential is E�R�=−
2 /2mR2; the repulsion en-
ergy due to interaction is equal to gnp�R�=3
2N�R�a /mR3,

FIG. 2. �Color online� Deeply localized states. For low densities
of bosons the distances between deeply localized states of radius
R�L �or smaller� are separated by distances d�R��L.
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where we used Eq. �23� and the well-known relation for an
effective potential field induced by a gas of scatterers.66

Minimizing the total energy per particle

Etot�R� = −

2

2mR2 +
3
2N�R�a

mR3 �25�

over R and employing Eqs. �19� and �24�, we find the value
of R corresponding to the minimum of energy at fixed n with
the logarithmic precision:

R�n� =
L

ln
nc

n

, �26�

where the critical density nc is defined as follows:

nc = �3L2a�−1. �27�

The critical density can be treated as the density at which the
average attraction energy E of the random potential equals to
the energy per particle ng. The factor f in Eq. �19� as well as
the next approximation to solution �26� leads to the correc-
tions of the type ln�ln

nc

n � which can be neglected. The dis-
tances between the filled wells according to Eq. �20� are

d�n� =
L

ln
nc

n


nc

n
�1/3

. �28�

This distance strongly exceeds the average size of potential
well �26� at n�nc. At the same condition the chemical po-
tential of atoms can be estimated as

��n� = −

2

2mR2�n�
= −

E
2

ln

nc

n
�2

. �29�

The tunneling amplitude t�n� between two wells separated by
a typical distance d�n� can be found by employing the single-
particle result �21�:

t�n� = exp�− f
nc

n
�1/3� , �30�

where f � f�ln
nc

n �. Since f�x� has a powerlike asymptotic at
large x, one finds f ��ln

nc

n ��.
Thus, the Bose gas at n�nc is fragmented into multiple

clusters of small size R�n� separated by much larger dis-
tances d�n� and containing about L / �3a�ln

nc

n �3� particles
each. The amplitude of tunneling between the wells is expo-
nentially small, so that the number of particles in each cluster
is well defined. The phase is therefore completely uncertain.
Such a state is a singlet with inhomogeneously distributed
particles, a random singlet: the ground state is nondegener-
ate.

Let us outline a more quantitative approach to the same
problem which allows to find the exact shape of the optimal
fluctuation and exact figure in the exponent. Let N particles
fill a random potential well with the potential U�r�. The ef-
fective potential acting on a particle is Ueff�r�=U�r�
+gnp�r�, where np�r� is the coordinate-dependent density of
particles obeying the constraint �np�r�d3r=N. We assume

that the self-consistent potential well Ueff�r� has only one
bound state and all N particles occupy it. Then the particle
density np�r� is related to the normalized wave function of
this state ��r� by the following equality: np�r�=N��2�r��.
Similarly to the single-particle case, the most probable fluc-
tuation realizes the minimum of the functional:

F�U,�� =
1

2
� U2�r�d3r − �� � 
2

2m
����2

+ �Ueff�r� − E���2�r���d3r . �31�

The minimization proceeds over � and U independently at a
fixed np�r�. The minimization over U results again in the
relationship U=���2�. Therefore, the effective potential
Ueff�r� is also proportional to ��2� :Ueff�r�=−���2�r��, where
�=�−gN. Thus, the wave function � satisfies the Ginzburg-
Landau �nonlinear Schrödinger� equation

�2� − q2� − l�3 = 0, �32�

where q2=−2mE /
2 and l=2m� /
2. By a scaling transfor-
mation r=�x, �=�� Eq. �32� can be reduced to a standard
form,

�2� − �3 = �� , �33�

with the normalization condition ��2d3x=1. These require-
ments determine all unknown values: �=	� /q; �=�−3/2 and
l=�. The argument of exponent in the expression for con-
figuration probability �5� thus reads

� =
�2�3�4

2�2 �4 =

4q�1 + ��2

8m2�2	�
�4, �34�

where �=gN /� and �4=��4d3x. By definition q=1 /R.
Therefore, expression �34� can be rewritten as �=CL

R �1
+��2 with numerical coefficient C= 3

16
	�
��4d3x. The eigen-

value � and �4 for the normalized solution of Eq. �33� can be
calculated numerically. We find ��353.082 and �4
�1420.35.69 With these values we find C=4.50. To find N
we apply a rough approximation for the number of particles
per unit volume: n=NR−3 exp�−��. From this equation we
find with the logarithmic precision:

ln
N

nL3 = C
L
R

�1 + ��2. �35�

This equation can be treated as an implicit equation for the
maximal radius of filled potential wells R as function of N.
The value N must minimize energy or equivalently R. Tak-
ing derivatives of both sides of Eq. �35� by N and assuming
dR
dN =0, one finds

N ln
N

nL3 =
��1 + ��

2g
=

R�1 + ��	�

16
Ca
. �36�

From Eqs. �35� and �36� it is possible to find N and R. With
the same logarithmic precision they are
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R =
CL

ln
nc

n

, N =
L
a

	�

16
 ln2 n

nc

�37�

in good agreement with our simple estimates. The value �

is logarithmically small: ���ln
nc

n �−1. Further, we apply our
rough estimates.

The previous approach is valid if N�R��1. From N�R�
found in the previous paragraph we conclude that the disor-
der must be weak enough to satisfy the constraint L�3a.
The latter inequality is necessary but not sufficient. Addition-
ally the average density n must be large enough. Namely, it
must satisfy strong inequalities exp�−� L

3a �1/2�nc�n�nc. At
smaller n, only few particles appear in a potential well. At
n�exp�−� L

3a �1/2�nc, the size of filled potential wells ap-
proaches 36a. Most of the filled wells contain two particles,
but only a small part of the total number of wells of this size
�per unit volume� nw�36a� is filled, approximately 0.5
�10−4a−3 exp�− L

36a �. The consistency of our approximation
requires that the gas parameter remains small inside an opti-
mal potential well. The density inside the well is equal to nc.
Therefore, the interaction is weak inside the well if nca

3

= a
3L �1.
The compressibility �n /��= n

E ln�
nc

n � is finite as expected
for the Bose glass phase.31 In the absence of interaction the
probability that two single-particle eigenstates localized in
different potential wells have the same energy is zero. Thus,
the zero-temperature conductivity vanishes in the thermody-
namic limit. If the interaction is switched on, the energy
levels split by an amount of the order gnp. For n�nc the
wave functions are still localized and the conductivity at zero
temperature vanishes. Thus, the Bose gas in the ground state
or in the Bose glass is insulating, in the meaning that exter-
nal volume force �the gravitational field� does not cause a
macroscopic flow. At finite temperatures, however, the en-
ergy gap between different localized states can be bridged by
thermal activation leading to the Mott variable range hop-
ping �VRH�.58 Below we apply the VRH argument to our
situation. The tunneling probability between two wells, each
of extension R, separated by the distance L, is �t�L ,R��
=exp�−2L /R� �see analogous derivation in Sec. III�. To-
gether with the activation factor it gives the hopping prob-
ability between the two wells equal to

P�T� � e−2L/Re−�E/T, �38�

where �E is the energy difference between the two distant
wells. There is with high probability at least one localized
state in the interval of energy �E provided the condi-
tion �E��E�L3�1 is satisfied. Employing the derived
dependencies E�−
2 / �2mR2�, R=L / ln�nc /n�, and ��E�
=E−1R−3 exp�−L /R� and maximizing probability �38� over L,
we find the hopping conductivity ��T�,

��T� � e−C�Enc/�Tn��1/4
, �39�

where C is a constant or slow function of ln nc /n. In a simi-
lar way it is possible to calculate the nonlinear field-
dependent conductivity.

At the VRH thermal excitations �phonons, spin waves,
etc.� must be absorbed. In the diluted Bose gas these excita-
tions could be phonons. However, in the localized state the
gas is separated in fragments. The oscillations of density in a
fragment have the energy gap of the order 	4
nca
2 / �mL�
�E. There are also oscillations of the entire cloud volume
whose frequency is determined by the cloud side and the
above calculated compressibility. It is not clear, however,
what the density of states is of these phonons. They defi-
nitely attenuate strongly when their wavelength becomes of
the order or shorter than the distances between potential
wells d�n�. Thus, we cannot reliably use the VRH results to
the cooled gases. However, they are reasonable for conden-
sates realized in solids: the exciton and spin-wave conden-
sates.

V. TRANSITION REGION

Though our results are valid only for n�nc, it follows
from them that at n�nc the overlapping of different occu-
pied wells becomes large and the tunneling amplitudes reach
the value of the order of 1. Therefore, the phase coherence in
different wells grows until at some critical value of density
which we roughly identify with nc the global coherence is
established. Thus, at n�nc, the quantum phase transition
from localized singlet to the superfluid state proceeds. As
usual, the order parameter is the average phase factor
�exp�i���. The superfluid state bears clear traces of disorder:
its superfluid density is inhomogeneous at characteristic
scale L. It can be treated as a disordered superfluid. An al-
ternative argument goes as follows. The condition n�nc can
be rewritten in the form L�� where �= �an�−1/2 denotes the
superfluid healing length. The latter describes the range over
which the superfluid order parameter, when changed by a
local perturbation �e.g., by a wall or in the center of a vor-
tex�, regains its bulk value. Since L denotes the scale at
which the disorder becomes relevant, the condition ��L
simply means that the superfluid order parameter cannot
adapt to the rapid variation in the disorder which happens at
the scale L and superfluidity is destroyed. In the opposite
case n�nc, i.e., ��L this is not longer the case and super-
fluidity survives.

At n�nc, the energy of the repulsion gn becomes much
larger than the characteristic disorder energy E. Then the gas
becomes almost homogeneous with precision of small pa-
rameter E /gn�nc /n. In this case the approach by Huang and
Meng36 based on the homogeneous zero-approximation
ground state and refined by Giorgini et al.37 and by Lopatin
and Vinokur38 is justified. They demonstrated that the super-
fluid density ns is not equal to the total density as it is with-
out disorder, but remains close to the total density. Thus, the
superfluidity definitely strives in the limit of large density.
We conjecture that ns vanishes at the same quantum phase
transition point n=nc at which the coherence disappears.

The small corrections found in the cited work36 can be
estimated by the order of magnitude without long calcula-
tions. Indeed, the disorder Hamiltonian reads

Hdis = �
p,q

Uqap
†ap+q, �40�

where Uq is Fourier transform of the random field U�x�. It
produces the change in energy in the second order of the
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perturbation theory. The change in energy per particle can be
estimated as follows:

�� =� �Uq
2�

�q

d3q

�2

�3 . �41�

The deltalike correlation function of random potential �4�
implies that �Uq

2�=�2 for any q. The excitation energy �q can
be estimated as 	gn

m q in the effective range of integration q
�	mgn after subtraction of the contribution of disorder to
the energy of the normal state. Collecting all these factors,
we find

�� �
�2m3/2�gn�1/2

4
2
3 =
�2�man�1/2

2	

2
. �42�

With precision of a numerical coefficient 0.85 this result co-
incides with that obtained by Huang and Meng �Eq. �7� of
their work36 gives the value of energy per unit volume; it
must be divided by n to find the energy of the ground state
per particle�. In terms of the Larkin length and energy and
critical density introduced earlier �see Eqs. �11�, �12�, and
�27�� the correction to the energy of the ground state per
particle can be expressed as

�� �
	


3
E
 n

nc
�1/2

�

2

m�2

�

L
. �43�

The change in superfluid and condensate densities can be
found from their initial values �one exactly and another ap-
proximately equal to the total density n� by multiplication to
a small factor proportional to �� /�0�� /L, where �0
=gn /2=2

2an /m�
2 /m�2.

VI. CORRELATED DISORDER

In this section we consider properties of the weakly inter-
acting Bose gas in a big box with a correlated random po-
tential. The properties of correlated random potential were
already described in the second half of Sec. II �see the text
related to Eqs. �8� and �9��. Here, following the line of con-
sideration developed in Secs. III–V, we study first the size
and distribution of single-particle states and tunneling be-
tween them and how they are modified by interaction. We
start with the single-particle states.

A. Single-particle states in a correlated random potential

Keldysh and Proshko,49 and Kane50 were the first to find
the electron density of states in a semiclassical random po-
tential. They proved that, in contrast to the uncorrelated dis-
order for which ��E��exp�−�E /E�1/2�, the density of states
in a correlated disorder is a Gaussian function of energy
��E��exp�−c�E /U0�2�, where c is a numerical constant. In-
dependently but later the same result was found in Refs.
52–54. Shklovskii and Efros55 derived the same result em-
ploying the instanton approach. John and Stephen56 found
the dependence of the preexponential factor on energy. Their
result was confirmed by Thirumalai57 by a different method.
Below we rederive their result and find important character-
istics of optimal fluctuation wells in the case when the cor-

relation length is large enough. It is intuitively clear that, at
b�L, the density of states and other characteristics of the
spectrum and optional states only slightly differ from their
values for uncorrelated random potential. At b�L numerical
coefficients will be different from those for uncorrelated dis-
order, but with this reservation still our semiquantitative de-
scription is valid. Therefore, the most interesting is the situ-
ation with b�L. Such a disorder we call strongly correlated.
In what follows we assume the strongly correlated disorder.
The Larkin length for the correlated disorder reads

L =
3
4

4
m2U0
2b3 . �44�

It is convenient to introduce another characteristic length B
= �3 /4
�1/4�
2 /mU0�1/2. For strongly correlated disorder B
�b. The Larkin length is associated with B by the following
relation:

L
b

= 
B

b
�4

. �45�

To find the exponent in the density of deeply localized states
it is necessary to minimize the functional
�U�x�K−1�x ,x��U�x��dxdx� at fixed energy of the quantum
state in the potential U�x�. The condition of minimum is
reduced to a following relationship between the optimal fluc-
tuation potential U�x� and the wave function ��x�:

U�x� = �� K�x,x�����x���2dx�, �46�

analogs to Eq. �16� for the uncorrelated disorder. This equa-
tion shows that the characteristic size of U�x� is always equal
to b. Indeed, it is correct if the characteristic size of the wave
function is less or equal to b. In the opposite case the char-
acteristic size of the potential would be much larger than
b and, respectively, the probability of such configuration
would be much smaller. Deep levels have negative energy
E, much larger by modulus than the energy scale of the ran-
dom potential U0. Since the optimal fluctuation potential
well must have the level E, its depth is not less than �E�.
The fundamental difference between the optimal potential
wells in the cases of uncorrelated and strongly corre-
lated disorder is that the former contains only one level,
whereas the latter contains many levels as shown in Fig. 3.
Indeed, the number of levels in the optimal well is not less
than 1 /6
2�	2m�E�b /
�3�1 /6
2�	2mU0b /
�3��b /L�3/4

= �b /B�3�1. Therefore, the level E is located close to the
bottom of the optimal potential well. Its depth with high
precision is equal to �E� and its shape is determined by the
function h�r /b� from Eq. �8�. If the correlation function is
nonsingular, then U�x�=Eh�r /b�. The case when the corre-
lation function is singular will be discussed separately at the
end of the section.

The exponent in Eq. �1� can be calculated exactly leading
to the result for the probability q�E� to find the level with
energy less than E �with precision of a prefactor�:
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q�E� = exp
−
E2

2�U2�� . �47�

In a more accurate treatment one needs to take in account
that the level E can be not the ground state in the optimal
well, but an excited state. Since even excited states are close
to the bottom, the spectrum is the same as for a spherically
symmetric quantum oscillator with the frequency �
= ��E�h��0� /mb2�1/2. Therefore, the depth V of the well is not
exactly equal to �E�. It depends on what excited state occu-
pies the particle:

Vn1,n2,n3
= �E� + ��n1 + n2 + n3� + 3/2�
� . �48�

After summation over all ni �i=1,2 ,3� from 0 to infinity we
find the corrected expression for the probability q�E�:

q�E� = exp
−
E2 + 3�E�
�

2�U2�
��1 − exp
−

�E�
�

�U2�
��−3

.

�49�

The ratio �E�
� / �U2� which appears in Eq. �49� by the order
of magnitude is equal to the product of two ratios
��E� /U0�3/2� �B /b�. The first factor is large; the second one
is small and their product varies from small to large values
always remaining larger than �B /b�. Nevertheless, a strong
enhancement of probability up to a factor �b /B�3 in compari-
son to the initial expression �47� is achieved at decreasing
modulus of energy. Summarizing, we conclude that the pos-
sibility of the excited states may change a comparatively
slow-varying prefactor leaving principal exponent �18� un-
changed.

The density of potential wells containing deep levels
lower than E for strongly correlated random potential reads

nw�E,b� = b−3 exp�− E2/2U0
2� �50�

and the average distance between such wells is

d�E,b� = b exp�E2/6U0
2� . �51�

The direct tunneling between wells does not play an impor-
tant role since the particles remain almost classical even near
the mobility edge in contrast to the uncorrelated disorder.
The percolation of the classical trajectory corresponds to the
mobility edge. According to the Shklovsky estimate,48 the
percolation of wells happens at E=−0.9U0. The characteris-

tic de Broglie wavelength 
 /	2m�E� at this energy is much
less than b for strongly correlated disorder. The mobility
edge energy is negative and not far from the percolation
threshold.

If the correlation function is singular, as for the OZ cor-
relator �6�, the result of Eq. �47� is not valid. In this case the
shape of the optimal fluctuation potential reads

U0�r� = − �
e−r/b

r
, �52�

where the coefficient � must be found from the condition
that a stationary state of this potential is equal to a fixed
negative E. As in the previous case, let us first consider the
case when E is the ground-state energy of the OZ potential.
We anticipate that the linear size of this state is much less
than b. Then in the OZ potential �52� it is possible to put
exponential factor equal to 1. Thus, the problem is reduced to
the quantum Kepler problem, whose spectrum and eigen-
states are known. In particular the energy of the ground state
reads

E1 = −
m�2

2
2 . �53�

From the above indicated constraint we find the relation be-
tween � and E:

� = 
	2�E�
m

. �54�

The diameter of the ground state is equal to the Bohr radius:

aB =

2

m�
=




	2m�E�
. �55�

The inequalities �E��� /b3/2 and b�L=
4 /m2�2 must be
satisfied. From these inequalities and Eq. �55� we find

aB �

b3/4

	m�
= 
L

b
�1/4

b � b . �56�

This inequality justifies the earlier accepted approximation
�neglect of the exponential factor�. Now we are in a position
to calculate the probability of the optimal state. The number
in exponent reads

� =
1

2�2� �U0
2�r� + �2
dU0

dr
�2�d	 . �57�

The two terms in the integral give identical contributions.
Thus,

� =
4
�2

�2 �
0

�

e−2r/bdr =
4

2b�E�

m�2 . �58�

Therefore, in this approximation the singular character of the
OZ correlator leads to a probability

q�E� = exp�−
4

2b�E�

m�2 � , �59�

which is not the Gaussian.

U(x)

x
U0

b

B

FIG. 3. �Color online� Long-range correlated potential. There
are typically many bound states per well.
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Let now assume that the energy E corresponds to one of
the excited states:

�E� =
m�2

2
2n2 . �60�

From this equation we find the value �n corresponding to the
nth excited state:

�n = n� . �61�

Therefore, from Eq. �58� the corresponding value of the
number in the exponent is �n=n2�. Since ��1, the series
�exp�−�n� with high precision is equal to its first term.

B. Weakly repulsive Bose gas in strongly correlated disordered
potential

In this section we consider the Bose gas with the average
density n. The gas partly fills all potential wells with the
depth less than E. Let the particles fill a typical well up to the
radius R�b. If the correlator is regular at x=x�, the follow-
ing equation gives a rough estimate of energy per particle:

��E,R;b,n� = E
1 −
R2

2b2� +
3
2na

m

 b

R
�3

exp
 E2

2U0
2� .

�62�

The first term in the right-hand side of Eq. �62� is the gain of
energy due to the random potential; the quadratic term in the
brackets corresponds to the oscillatorlike potential at small
R; the second term is the energy of interaction. Minimizing
��E ,b ,R� over E and the ratio R /b, one arrives at following
results:

E � − U0	2 ln
nc

n
, �63�

R

b
� 
ln

nc

n
�−1/2

. �64�

The critical density nc is defined as follows:

nc �
	3

4

mU0


2a
�

1

B2a
. �65�

As in the case of the uncorrelated disorder it can be treated as
a density at which the interaction energy ng becomes equal
to the attractive energy of the random potential �U0. All
previous results are valid at n�nc. According to Eq. �64�, the
ratio R

b is small. This fact justifies the approximation of qua-
dratic potential in Eq. �62�. It allows to estimate the charac-
teristic momentum of particles or the width of their distribu-
tion over momentum:

�p = m�R = m�b
ln
nc

n
�−1/2

. �66�

The chemical potential is readily derived from Eqs.
�62�–�65�:

��b,n� = − U0	2 ln
nc

n
�1 −

9

4

ln

nc

n
�−1� .

The compressibility is

�n

��
=

n	2 ln
nc

n

U0 �1 −
9

4 ln
nc

n
� . �67�

Two filled wells are separated by a typical distance d�b ,n�
much larger than the size of the well:

d�b,n� = b
nc

n
�1/3

. �68�

With this value of d it is ready to estimate the tunneling
coefficient:

t�b,n� � exp�−
b

B

nc

n
�1/3� . �69�

The number of particles in each typical well can be estimated
as N=n /nw�E�=ncb

3�b3 /B2a. It is large if b�a.
These results conclude the description of localized states

for strongly correlated disorder. At energies between −U0
and U0 the motion of particle is strongly disordered, but it
becomes more and more free when energy approaches and
exceeds U0. At E�U0, the random potential can be consid-
ered as a perturbation. The quantum phase transition from
the localized random singlet state to a superfluid proceeds at
n=nc. Note that the critical density in the presence of
strongly correlated disorder does not depend on the correla-
tion length b.

VII. BOSE GAS IN A TRAP WITH DISORDERED
POTENTIAL

Here we consider deeply localized states in a potential
which is the sum of a harmonic trap and a Gaussian random
potential. The Hamiltonian of the system has an additional
term namely the potential energy of Bose particles in the
trap:

Htrap =� Vtrap�x��†�x���x�dx , �70�

where the harmonic potential of the trap generally has a form

Vtrap�x� =
m

2
��x

2x2 + �y
2y2 + �z

2z2� . �71�

In this section we consider only the isotropic trap with �x
=�y =�z=�. Strongly anisotropic traps can be considered as
a system with reduced dimension 2 or 1 and will be consid-
ered in the next section. A new scale of length associated
with the trap is the well-known oscillator length �
=	
 / �m��.

A principal difference between the Bose gas in a box and
in a trap is that in the latter case the gas forms a cloud whose
size is determined by energy minimization at a fixed number
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of particles, whereas in the former case the size of the box
and, therefore, its average density n is fixed. Nevertheless,
we will see that all phase states of the Bose gas in the box
appear when this gas is placed into a harmonic trap, but their
appearance is regulated by the total number of particles in
the gas N instead of their average density.

A. Trap with uncorrelated disorder

Four competing parts of a Bose-particle energy are kinetic
energy, the confining potential energy of the trap, the repul-
sion from other particles, and the energy of the random po-
tential. Two of them, the interaction with the trap and the
random potential, tend to confine and localize the particle.
Let the gas form a single cloud of the radius R. The rough
estimate of the two confining energy contributions can be
done as follows:47

Vtrap =
m�2R2

2
=


2

2m

R2

�4 . �72�

The disorder energy for the same cloud can be estimated as

Vdis = −
�


4
R3

3
�1/2 � −


2

2m

L

R
�3/2

. �73�

The latter estimate can be justified as follows. The cloud
chooses such a position that the random potential energy is
negative. A characteristic fluctuation of energy in a volume
	 is

1

	���	

U�x�dx�2�1/2

=
1

	�� �
	

K�x,x��dxdx��1/2

=
�

		
.

Substituting into the last expression 	= 4
3
R3, we arrive at

Eq. �73�. Comparing the two confining contributions, we
conclude that, at L��, the influence of disorder is negli-
gible. The remaining two terms of energy: kinetic energy

K � 
2/�2mR2� �74�

and the repulsion energy per particle:

Vint = gn =

2

m

3Na

R3 �75�

are deconfining. The kinetic energy dominates at R�3Na. In
the opposite case R�3Na the repulsion energy dominates.
Below we analyze several limiting cases.

�1� Weak disorder: L��. Depending on the relative value
of the interaction one should distinguish two different situa-
tions as follows:

�1a� Weak interaction: 3Na��. In this case the interac-
tion can be neglected. Minimizing two remaining terms, the
kinetic energy and energy of the trap, we find R=�. Physi-
cally it means that all particles are condensed at the oscillator
ground state.

�1b� Strong interaction: 3Na��. Neglecting kinetic en-

ergy and minimizing remaining energy of traps plus the re-
pulsion energy, one finds the result known as Thomas-Fermi
approximation:70 R= � 9

2Na�4�1/5.
More interesting is the case of strong disorder:
�2� Strong disorder: L��. Again we consider several dif-

ferent limiting cases depending on relative strength of disor-
der, interaction, and the trap potential.

�2a� Weak interaction: 3Na�L��. In this range of vari-
ables the nonergodic phase is realized. Since interaction is
negligible, the particles find a random potential well with the
deepest level and fall into it. Let such a well can be found at
a distance �L from the trap center. Its depth typically is
about 9E ln2�L /L�. This gain of energy must be not less than
the loss of the trap energy m�2L2 /2. A typical value of L
appears when both these energies have the same order of
magnitude. Then L�6	2��2 /L�ln�� /L�. A typical size of
the well is R�L / �6 ln�� /L��.

�2b� Moderate interaction: L�3Na��. In this case the
ergodicity is restored. Our experience with the gas in a box
prompts that the gas cloud is split into fragments each occu-
pying a random potential well from very small size until
some size R depending on N. From Eq. �29� the typical dis-
order energy per particle is �=−E�ln

nc

n �2. It becomes equal to
the trap energy at a distance L���2 /L�ln � �see the defini-
tion of the parameter � below in Eq. �76��. Therefore, the
average density is n�NL3 /�6. The ratio nc /n plays the de-
cisive role: the state of the Bose gas is fragmented and
strongly localized when it is large; the transition to delocal-
ized superfluid state proceeds when this ratio becomes 1.
With precision of a numerical factor the ratio nc /n is equal to
a new dimensional parameter:

� =
�6

3NaL5 . �76�

Strongly localized fragmented state is realized at ��1. The
transition proceeds at �=1. The superfluid phase emerges at
��1. The regime diagram is shown in Fig. 4.71 Note the
counterintuitive dependence of the cloud size on the number
of particles: the cloud slightly contracts with increasing num-
ber of particles. It happens because the number of particles in

Thomas-Fermi

ln(Na/�)

ln(�/L)

R ≈ � non-ergodic

fragmented

L∼ �2

L ln(�/L)

harmonic

Γ =1

R∼ (Na�4)1/5

L ∼ �2

L ln( �6

NaL5 )

FIG. 4. �Color online� Regime diagram of atoms in three-
dimensional traps: uncorrelated disorder. R denotes the size of the
single existing atomic cloud. L is the size of the cloud of fragments.
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each fragment increases more rapidly with the average den-
sity than the number of fragments.

B. Trap with strongly correlated disorder

Following the line of development accepted in the previ-
ous subsection, we start with the case of weak disorder:

�1� Weak disorder: U0�
� or B��. In this case the ran-
dom potential only slightly changes the state of the gas in the
absence of disorder �see previous subsection�. In what fol-
lows we assume for simplicity that ��b.

�2� Strong disorder: U0�
� or B��. As in the previous
subsection we consider different relative strength of the in-
teraction and disorder.

�2a� Weak interaction: 3Na�b3 /B2��. The interaction is
negligible. Therefore, all particles find the deepest well in the
trap and fall into it. The typical distance from the center of
the trap to the deepest well is L= ��2 /B��ln �2 /bB�1/4 and its
typical depth is E=−U0

	6 lnL
b . In this range of parameters

the system is nonergodic.
�2b� Moderate interaction: b3 /B2�3Na��. In this case

the particles are distributed among multiple potential wells.
The system is ergodic. The average depth of the well is
E�N�=−U0

	2 ln �, where

� =
U0

5/2


2Nam1/2�3 =
�6

NaB5 �77�

is the dimensionless parameter analogs to that introduced in
the previous subsection. It represents the ratio nc /n. Until �
is large the ground state of the Bose gas is deeply localized
random singlet. The transition to the superfluid state pro-
ceeds at ��1. The total linear size of the cloud is L
=23/4��2 /B��ln ��1/4. Inside a fluctuation potential which has
a typical size b particles occupy a smaller sphere of the ra-
dius R��Nab2B2�1/5. The phase state �regime� of the system
depends on three dimensionless parameters: B /b, 3Na /�,
and � /b. The regime diagram is shown on Fig. 5.

VIII. LOWER DIMENSIONS

In the experiments with cooled gases the trap is mostly
realized as a rotation ellipsoid with a large aspect ratio. In the
experimental setup with He on Vycor experimenters used
thin helium film, which displayed the crossover from 2D to
3D behavior. Therefore, and also for comparison with exact
1D solution33 it is reasonable to extend our theory for lower
dimensions d=1,2.

A. Box: Uncorrelated disorder

1. Single-particle levels

We start with the extension of Eq. �11� connecting the
Larkin length Ld and the constant �2 for the uncorrelated
disorder:

Ld = 
 
4

m2�2�1/�4−d�

�78�

following from the dimension consideration. The character-
istic energy reads

Ed =

2

2mLd
2 =

1

2

md�4


2d �1/�4−d�

. �79�

The extension of exponential law �17� for the probability to
find the deep potential well of the size not larger than R is

q�R� = f exp�− 
Ld

R
�4−d� = f exp�− 
 �E�

Ed
��4−d�/2� ,

�80�

where the Larkin length differs from that given by defini-
tion �78� by the factor �	d /2�1/�4−d�, in which 	d

=2d−1
d/2�d!�−1
k=1
d−2 ���k+1�/2�

���k+2�/2� is the volume of the sphere with
the radius 1 in d-dimensional space. As earlier f is a power-
like function of the ratio L /R at L /R�1: f�x� x� with �
=1 for d=2,3 and �=0 for d=1.51 The extension of Eq. �19�
for the density of the fluctuation potential wells with the
radius not exceeding R looks in d dimensions as follows:

nw�R� = R−df exp�− 
Ld

R
�4−d� �81�

and the average distance between such wells is

d�R� = Rf−1/d exp�1

d

Ld

R
�4−d� . �82�

The tunneling amplitude between nearest wells has a charac-
teristic value

t�R� = exp�− f−1/d exp�1

d

Ld

R
�4−d�� . �83�

2. d-dimensional gas in a box

We consider the filling of the potential wells by the di-
luted Bose gas of the density n=N /Ld. Again, let the gas fill
all the wells up to the radius R. The average number of
particles per well is

Thomas-Fermi

ln(Na/�)

R ≈ �

harmonic

Γ =1

R ∼ (Na�4)1/5

L ∼ �2

B

�
ln

�2

bB

�1/4

L ∼ �2

B

�
ln

�6

NaB5

�1/4

ln(�/B)

fragmented

non-ergodic

FIG. 5. �Color online� Regime diagram of atoms in three-
dimensional traps: correlated disorder. R denotes the size of the
single atomic cloud; L denotes the size of the fragmented state.
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N�R� =
n

nw�R�
= f−1nRd exp�
Ld

R
�4−d� �84�

and the density of particles in the well is

np�R� = N�R�/�	dRd� =
n

f	d
exp�
Ld

R
�4−d� . �85�

The repulsion energy per particle is as before gdnp�R�, but
the connection between the coupling constant g and the scat-
tering amplitude a depends on dimensionality of the space:

gd =
	d
2ad−2

m
. �86�

At d=2 this equation is invalid, but the coupling constant g
is well defined and has dimensionality energy� length2.
Minimizing the energy per particle in complete analogy with
what was done in Sec. IV, we find the maximal radius of the
filled well as a function of density,

R�n� =
Ld


ln
nc

n
�1/�4−d� , �87�

and the critical density is defined by the equation

nc =
	dEd

gd�4 − d�
=

	d

4
Ld
2ad−2�4 − d�

. �88�

In 1D Bose gas the critical density increases with the scat-
tering amplitude in contrast to two- and three-dimensional
cases. The reason is that the 1D Bose gas with strong repul-
sion �hard core� is equivalent to the Fermi gas whose kinetic
energy increases with the size of the core.

The ratio nc /n can be rewritten in equivalent form:

nc

n
= 
 �d

Ld
�2

, �89�

where �d=
 /	2mgn is the coherence or healing length of the
Bose gas without disorder. The condition n�nc at which the
deeply localized ground state is realized implies also Ld
��d as it could be expected. In 1D case large values of the
gas parameter na1 correspond to the almost ideal case in
which kinetic energy is much larger than the interaction. Ac-
cordingly, the gas parameter inside the fluctuation well
nca

d��a /Ld�2 must be large in 1D case.
We do not show other calculations analogous to those

produced in Sec. IV and present only the final results as
follows: number of particles in a filled well,

N�n� = 	d
−1
ln

nc

n
�−d/�4−d�
Ld

a
�d−2

, �90�

distance between the filled wells:

d�n� = Ld
 nc

fn
�1/d
ln

nc

n
�−1/�4−d�

, �91�

chemical potential:

��n� = − Ed
ln
nc

n
�2/�4−d�

, �92�

tunneling amplitude between wells:

t�n� = exp�− 
 f
nc

n
�1/d� . �93�

3. Critical phenomena in d-dimensional gas

From Eq. �88� it follows that the quantum phase transition
proceeds on the line

nc �
1

ad−2Ld
2 , i.e., �d � Ld, �94�

where Ld= �
2 /m��2/�4−d� and �d��ad−2n�−1/2 denote the
d-dimensional Larkin and healing length, respectively.

Important characteristics of the critical phenomena are the
marginal space dimensions. For weak disorder, the Larkin
length diverges at d→4. Hence, in dimensions d!4 disorder
has to overcome a threshold value to destroy superfluidity
even in the limit of weak interaction. Thus, d=4 is an upper
critical dimension of the problem as has been discussed al-
ready in Ref. 31. A lower critical dimension is d=1. This can
be seen from calculation of the ground-state energy Eq. �43�
in one dimension which is logarithmically infrared divergent
reflecting strong quantum fluctuation. Giamarchi and
Schulz33 in a seminal paper found a quantum phase transition
in 1D Bose gas in disordered environment from a superfluid
to an insulating phase at increasing interaction parameter K
�2 /3 �compare the Appendix�. Since then this transition
was considered as a theoretical counterpart of the real tran-
sition in 1D systems �see, e.g., Ref. 31�. However, at this
transition �1n�0.25 strongly violating the gas condition
�1n�1. Thus, we conclude that the transition found in Ref.
33 is irrelevant to the experimental transition in one-
dimensional gas clouds at n�nc. Giamarchi and Schulz,
however, claimed that there are two different phase transi-
tions at small disorder: one at large value of dimensionless
coupling constant K and another at small K. Unfortunately
the part of the phase diagram beyond a small vicinity of the
critical point K=2 /3, �=0 was obtained by a speculation
rather than a rigorous treatment. Therefore, the question
about the existence of two different quantum phase transi-
tions remains open.

Critical behavior near the quantum transition was studied
by Halperin et al.30 and by Fisher et al.31 In the latter work
the scaling consideration was developed and even the critical
exponents were found. However, we are not sure that they
are valid for our problem since, according to previous re-
mark, they are associated with the strong-coupling critical
point. Second, even if there is only one critical point, the
marginal dimensions are 1+1 and 4+1 and it is very doubt-
ful that exact critical exponent can be found in the case 3
+1 �see a recent review34�.

4. Strongly anisotropic traps as low-dimensional systems

Considering the gas in a trap which has a shape of a disk
or a cigar, one should express the parameters of effective
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d-dimensional problem in terms of parameters of the 3D gas:
the particle density n, 3D-scattering length a, Larkin length
L, the transverse oscillator length ��, and the longitudinal
oscillator length �. To simplify the results we consider only
the most interesting and experimentally accessible situation
of a weak confinement:

a � �� � L . �95�

Then it is straightforward to see that the effective
d-dimensional Larkin length Ld is related to the 3D Larkin
length L by the following relationship:47

Ld � �L��
3−d�1/�4−d�. �96�

Indeed, the argument in exponent of the Gaussian distribu-
tion for uncorrelated disorder is �U2	 /2�2. The volume 	
can be approximately factorized: 	�	dRd	3−d��

3−d. Using
the standard estimate for U=−
2 /mR2, we arrive at Eq. �80�
with Ld defined by Eq. �96� with precision of a numerical
factor. To find the effective scattering length ad, one should
use an obvious identity ng=ndgd �both expressions are the
interaction energy per particle� with nd=n��

3−d	3−d being the
density in the reduced dimensionality space. From these two
equations it follows that

gd =
g��

d−3

	3−d
. �97�

Employing Eqs. �86� and �23�, we arrive at following rela-
tionship:

ad � �a��
d−3�1/�d−2�. �98�

This equation is invalid for d=2 and instead Eq. �97� must be
used. Below we consider possible regimes similarly to what
we did for the 3D system.

�1� Weak disorder: Ld�� or equivalently L��4−d /��
3−d.

The random potential is negligible. The competition of the
kinetic energy, trap energy, and interaction provides two dif-
ferent regimes as follows:

�a� Weak interaction: gdN�
2�d−2 /m or equivalently Na
��d−2��

3−d. In this case the longitudinal size of the cloud R
coincides with �.

�b� Strong interaction: Na��d−2��
3−d. This is the region of

the Thomas-Fermi regime R��Na�4 /��
3−d�1/�d+2�.

�2� Strong disorder: Ld�� or equivalently L��4−d /��
3−d.

�a� Weak interaction: gN /Ld
d��

3−d�
2 /mLd
2 or equi-

valently Na�L�d−2�/�4−d���
2�3−d�/�4−d�. This is a nonergodic

situation: all particles fall into the deepest potential well of
the typical size R�Ld / �ln �

Ld
�1/�4−d�. For d=2 it happens at

N��� /a; for d=1 the nonergodic regime exists if ��

� �a3L�1/4.
�b� Moderate interaction: L�d−2�/�4−d���

2�3−d�/�4−d��Na
��d−2��

3−d. In this range of interaction the cloud consists of
multiple fragments. They are weakly coupled each to other
provided the dimensionless parameter �=�2d / �Nad

d−2Ld
d+2�

=��
2d / �NaL�d+2�/�4−d���

�2�3−d��d−1�/�4−d��� is large �note that the
exponent at �� is zero at d=1,3 and −1 at d=2�. We remind
that � is equivalent to the ratio nc /n. A typical longitudinal
size of the fragment is R=Ld / �ln ��1/�4−d�; a typical distance
between fragments is d=R�1/d; the tunneling amplitude be-

tween fragments is t�exp�−�1/d�. The transition from local-
ized state to the phase-correlated superfluid state proceeds at
��1. At ��1 the disorder is negligible and the Thomas-
Fermi approximations works. The phase diagram in one di-
mension is shown in Fig. 6.

B. Strongly correlated disorder

As in 3D case, the distribution of random potential
is characterized by the correlation length b and the
characteristic energy U0. It is assumed that b�L
��
4 / �m2U0

2bd��1/�4−d� or equivalently b�B=
 /	mU0. The
characteristic size of a deep potential well is equal to the
correlation length b. The probability to find the well contain-
ing the level with energy E�0 and sufficiently deep, so that
�E��U0, is given by the Gaussian exponent Eq. �47�. The
number of such wells per unit volume is

nwd�E� = b−d exp
−
E2

2U0
2� �99�

and the distance between them is dd�E�= �nwd�E��−1/d. The
gas with the average density nd fills the wells up to the depth
�E�=U0

	ln�ncd /nd�. The critical density is given by equation

ncd =
	d

d

U0

gd
=

	d

4
d

1

B2ad
d−2 . �100�

The latter formula is invalid at d=2, but the former one,
employing the value gd, remains correct. The particles in
each well fill a d-dimensional sphere of the radius R
=bU0 / �E�=b /	ln�ncd /nd�. The transition to the superfluid
state proceeds at nd=ncd.

Proceeding to the gas in a trap, we first specify conditions
which are realistic and allow to reduce the number of pos-
sible regimes:

a � �� � L � b . �101�

At these conditions gd��
3−d=g; ad

d−2��
3−d=a and Eq. �100� can

be rewritten as follows:

Thomas-Fermi

harmonic L ∼ �2

L 1
(ln(�/L1))1/3

non-ergodic

R ∼ �
N�4/a1

�1/3

R ∼ �

L ∼ �2

L1

�
ln(

�2a1

NL3
1

)
�1/3

fragmented

ln(N�/a1)

ln(�/L1)

FIG. 6. �Color online� Regime diagram of atoms in a one-
dimensional trap: uncorrelated disorder. In reduced dimensions R
denotes the longitudinal size of the single atomic cloud; L denotes
the longitudinal size of the fragmented state.
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ncd =
	d

d

U0��
3−d

g
=

	d

4
d

��
3−d

B2a
. �102�

Note that this equation is valid at d=2 as well. The possible
regimes are classified as follows:

�1� Weak disorder: U0�
� or equivalently B��.
�1a� Weak interaction: Na��d−2��

3−d. In this case the size
of the cloud R=�.

�1b� Strong interaction: Na��d−2��
3−d. The Thomas-

Fermi range:

R = 
 4
d

	d	3−d

Na�4

��
3−d �1/�d+2�

. �103�

�2� Strong disorder: U0�
� or B��.
�2a� Weak interaction: gN /bd��

3−d�U0 or equivalently
Na�bd��

3−d /B2; nonergodic situation: a typical depth of the
deepest potential well is E=−U0

	2d ln�L /b�. A typical dis-
tance of this well from the center of the trap is L
�	U0 / �m�2� �2d ln �2 /bB�1/4=�2 /B�2d ln �2 /bB�1/4.

�2b� Intermediate interaction: bd��
3−d /B2�Na��d−2��

3−d.
This is the range of fragmented state. The particles in frag-
ments are deeply localized if the parameter �
=�2d��

3−d / �Bd+2aN� is large. The particles in a fragment oc-
cupy a d-dimensional sphere of the radius R�N�=b /	ln �.
Their typical energy is E=−U0

	ln �. A typical distance be-
tween fragments is d�N�=b�1/d. The number of particles in-
side each fragment is about bd��

3−d / �aB2�. The total size of
the cloud is ���2 /B��ln ��1/4. The transition to the superfluid
states proceeds at ��1. The phase diagram in one dimen-
sion is shown in Fig. 7.

IX. DISCUSSION AND CONCLUSIONS

The theory predicts many quantitative characteristics of
deeply localized states. It also gives simple formulas for the
critical density nc at which the quantum phase transition
from the random singlet to superfluid state proceeds. Below
we discuss how these predictions can be checked in experi-
ments with cooled atomic gases. Four important parameters

can be controllably and independently varied in the experi-
ment. They are the number of particles N; the frequency � or
equivalently the strength of the trap; the scattering length a
�by approaching one of the Feshbach resonances�; the
strength of disorder U0. Using this freedom, it is feasible to
pass all spectrum of regimes described above. In particular,
varying U0 it is possible to transit from uncorrelated to
strongly correlated disorder. A simple estimate shows that, at
b�1 �m, the transition from uncorrelated to strongly cor-
related regime proceeds at frequency of disorder potential
�d=	2U0 /mb2�1 kHz which is accessible.

Simplest experiments are the measurements of the cloud
size L as a function of different variable parameters in the
regime of multiple localized fragments. Our theory predicts
that in the regime of uncorrelated disorder the size of the
cloud is inversely proportional to the frequency of the har-
monic trap � and proportional to the square of the disorder
strength. It also predicts a weak dependence of the size on
the number of particles �ln N. In the case of strongly corre-
lated disorder the size of the cloud is again inversely propor-
tional to �, but the dependence on the disorder strength is
much weaker: L U0

1/2. The dependence on N also is weaker
than in the uncorrelated regime: L �ln N�1/4.

It would be important to observe a crossover from the
nonergodic state with one or few fragments to the ergodic
state with many fragments and check that it happens at N
=L /3a for uncorrelated disorder and at N=b3 /3aB2 for
strongly correlated disorder �see modifications of these re-
sults for d=1,2 in Sec. VII�. Counting the number of frag-
ments, one can find the number of particles per fragment and
compare it with theoretical prediction. Direct measurements
of the size of fragments and distances between them are
much desirable since they give important information on the
balance between the interparticle repulsion and their interac-
tion with the random potential.

Another feasible experiment is the time-of-flight spectros-
copy after switching off both the trap and the random poten-
tial. In this experiment the distribution of particles over mo-
menta �velocities� is measured. The distribution of
momentum has a finite width �p. According to the uncer-
tainty principle the value 
 /�p can be treated as the average
size of the fragment R=L / ln � for the uncorrelated disorder
�see the definition of � in Eq. �76��. The fastest is the depen-
dence of this value on the strength of disorder: �p U0

2. Oth-
ers dependencies are logarithmic. For example, d�p

d ln � =− 3

L

=3 d�p
d ln N . Installing a counter close to the trap at a distance

comparable to the size of the trap would allow to register the
oscillations of the particle flux due to discrete character of
the fragmented state. This is another opportunity to find the
distances between fragments. In the case of strongly corre-
lated disorder the width of the distribution is determined by
Eq. �66�, in which the ratio nc /n must be substituted by �
defined by Eq. �77�. In this case �p depends linearly on �.
Other dependencies are much weaker. Nevertheless, the pre-
diction that the ratio �p /� depends on one dimensionless
parameter � can be experimentally checked.

The transition between localized and delocalized coherent
state in the random potential was confirmed in several ex-
periments �see Sec. I�. We propose to make more detailed
measurement of the transition manifold and check our pre-
dictions formulated in Eqs. �27� and �65�.

Thomas-Fermi

R ≈ �

harmonic
L ∼ �2

B

�
ln

�2

bB

�1/4

ln(�/B)

R ∼
�

N�4

a1

�1/3

non-ergodic

fragmented

ln(N�/a1) L ∼ �2
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�
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�2a1

NB3

�1/4

FIG. 7. �Color online� Regime diagram of atoms in a one-
dimensional trap: correlated disorder. In reduced dimensions R de-
notes the longitudinal size of the single atomic cloud; L denotes the
longitudinal size of the fragmented state.
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An important question is whether the relaxation to the
ground state can be reached during a reasonable time interval
compatible with the time of experiment. We analyze this
question for the uncorrelated or weakly correlated disorder.
In this case the relaxation time due to tunneling can be
estimated as "=2
�n

−1t−1, where �n� E

 �ln ��2 is the cha-

racteristic frequency of the optimal potential well and t
�exp�−�1/3� is the tunneling coefficient �see Eq. �30��. For
numerical estimates we accept ��125, ��10 �m, b�L
�1 �m, a�0.01 �m, and N�27 000. Then t−1=148 and
"�0.06s. The Larkin length can be increased by decreasing
the amplitude of the random potential �L U0

−2�. Simulta-
neously at fixed values N, �, and a the value � decreases as
L−5. This example shows that the equilibrium is accessible,
though it may be difficult to reach large ratio L /b. In the
experimentally important case of 1D �cigarlike� cloud the
relaxation time is shorter since it is proportional to exp�
−�1� with �1=�2 /3NaL. At �=25 �m, L=1 �m, and a
=0.01 �m the ratio �1 reaches value 1 at N�85 000.

The closest to ours was the approach developed in the
work by Lugan et al.22 Apart from the fact that these authors
considered only the one-dimensional case, the main differ-
ence between our and their problems is that they considered
the random potential with the exact lower boundary Ub and
with on-site distribution function W�U� exp�−c�U−Ub�� in-
stead of the Gaussian distribution. Such a distribution allows
deeply localized states only at energies E close to the exact
lower boundary Ub. The corresponding fluctuations have the
width R the broader the closer E is to Ub. It is clear that these
levels are very different from those discussed above. If the
random potential has the exact lower boundary, our theory is
valid only if this boundary is separated from the most prob-
able value of the potential by an energy interval strongly
exceeding the energy dispersion. Then the localized states of
our theory appear at intermediate energies between disper-
sion and Ub.

In conclusion, we presented a simple physical picture of
deeply localized states of the Bose gas in a random potential.
We demonstrated that the particles eventually fill the deep
potential wells formed by fluctuations of the random poten-
tial and by their self-consistent field. Based on this idea the
geometrical and physical properties of these states, such as
the size of the clusters, the distances and the tunneling am-
plitudes between them, and the size of the whole cloud
formed by the gas in a harmonic trap were calculated with
precision of numerical coefficients. We discovered that the
physical properties of these states depend significantly on
correlations of the random potential. It occurs that the
ground state of the system can be either almost homogeneous
and coherent �superfluid� if the disorder is weak enough or
fragmented and strongly localized. In particular, if the disor-
der is much stronger than the repulsion between particles, the
system transits into a nonergodic state, whose properties
even in the equilibrium strongly depend on the specific
sample. At growing number of particles the system occurs in
an ergodic but strongly localized ground state consisting of
multiple particle clusters populating deep fluctuation wells.
At the number of particles increasing, the tunneling between
different potential wells increases leading to the phase corre-
lation and finally to the quantum phase transition to the co-

herent �superfluid� state. We have found a simple expression
for the gas density at this transition in the gas confined by a
big box and equation for the phase transition manifold in the
gas confined by the harmonic trap. We have found that the
repulsion suppresses the localization in one and two dimen-
sions. In the 3D system it induces the transition to the super-
fluid state at the energy level at which single-particle states
are still localized.

Quite recently there appeared a work by A. Babichenko
and V. Babichenko72 in which the authors have formulated
the problem of deeply localized state for weakly interacting
Bose gas employing the Keldysh-Schwinger technique. For
the uncorrelated Gaussian disorder they have found the in-
stanton solution corresponding to the deeply localized state
at a fixed chemical potential and the expression for the
chemical potential vs given average density n, which coin-
cides with our Eq. �29�. Thus, they confirmed our theory by
exact calculation.
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APPENDIX: THE SUPERFLUID-INSULATOR TRANSITION
IN ONE DIMENSION

In this appendix we discuss the relation of our approach to
the theory of Giamarchi and Schulz.33 It is convenient to
state first the relation between the mass m, the boson density
n, the scattering length a, and the parameters K and � of the
field theory of 1D bosons.33,73,74 We omit all subscripts 1
which are excessive for one dimension. The phonon velocity
v is then given by

v = 
 n

m#
�1/2

, �A1�

where # denotes the compressibility of the bosons

# =
�n

��
=

1



vK
. �A2�

The Haldane inverse compressibility #H �Ref. 73� is related
to our standard definition by #=n2 /#H. Indeed, according to
our definition the elastic energy per unit length is E
� 1

2#�n2 which implies

K =
1





 m

n#
�1/2

. �A3�

The Boson coupling constant K is inverse to that of fermions.
These relations agree with those of Ref. 31 taking into ac-
count that in Ref. 31 the density is dimensionless and 
=1.
To get the relation between a and K we quote Haldane73

referring to earlier work of Lieb.75 Using the dimensionless
parameter �=1 / �
2na� �we absorbed a factor 1 /
2 in the
definition of ��, K is related to � by
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K � �1/2
1 −
1

2
�1/2�, � � 1, �A4�

K � 
1 −
8


2�
�1/2

, � � 1, �A5�

with a smooth interpolation in between. Thus, K changes
continuously from 0 �for a→� corresponding to no interac-
tion� to K=1 �for infinitely strong interaction�. Since for K
=1 bosonic and fermionic descriptions coincide, an infinitely
strong repulsive interaction corresponds to free fermions.76

Let us formulate the condition of superfluidity in terms of
coupling constant K. The condition of superfluidity for 1D
disordered system n!nc�a /L2 �see Eq. �94�� can be rewrit-
ten as

K ! K� =
1


n

m�


2 �2/3
�

1


nL
, �A6�

where � denotes the disorder strength. We will show that
K�K� remains the phase boundary between the superfluid
and Bose glass phases also if quantum fluctuations are taken
into account.

Let us study how quantum fluctuations renormalize the
disorder strength �. In lowest order in � the disorder strength
is renormalized by the Debye-Waller factor:

�eff � �e−2��2�. �A7�

Here

2��2� =
2


K
�

L−1

�−1 d2q

�2
�2

1

q2 �
1

K
ln�L/�� �

1

K
ln
 K

K�
� ,

�A8�

where we have used the relation for small K. Thus, for K
�K� there are no fluctuation corrections and our condition
�94� tells us that there is no superfluidity. In the opposite case

K!K� we find �by making the calculation self-consistent�
for max�K� ,2 /3��K,

�eff � �
K�

K
�1/�K−2/3�

. �A9�

Approaching the critical value K=2 /3 the effective disorder
strength is renormalized to zero for K��K�2 /3. In the op-
posite case there is no renormalization and the disorder is
relevant. From these considerations it is clear that the transi-
tion happening at K=2 /3 occurs only in one dimension.
There is another transition line K=K� which exists in higher
dimensions. In the next order in �, the condition K=2 /3

changes to K= K̃� with K̃�=0=2 /3.33 The transition at K

= K̃� is of the Kosterlitz-Thouless type. Even in a pure sys-
tem superfluidity persists only when the healing length � is
smaller than the system size L, i.e., for ���a /n�1/2�L. For
small K this condition can be written as 
nK!1 /L. Thus,
for a→� the superfluidity persists only if

K ! KL =
1


nL
. �A10�

The phase portrait obtained in this work is reproduced in
Fig. 8. An extension at sufficiently strong disorder of the
transition line found by Giamarchi and Schultz has been dis-
cussed by Altman et al. in Ref. 77.
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